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Abstract

This paper develops a closed queueing network model of a ride-hailing system by

viewing cars as the jobs moving through various nodes of the network perpetually. The

queueing network model crucially incorporates the travel times between different nodes

of the network. We prove a novel heavy traffic limit theorem for this queueing network,

providing an approximation for the original ride-hailing system.
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1 Introduction

This paper formulates and studies a closed queueing network motivated by ride-hailing systems such

as Uber, Lyft, and Didi Chuxing. In these systems, customers request rides via a mobile application

to travel from their current (pick-up) location to their final (drop-off) destination. Simultaneously,

drivers wait for the mobile application to match them with the customer requests. Consequently,

cars circulate through different regions of the city by picking up customers and delivering them to

their desired destinations.

We consider a city partitioned into a finite set of geographical regions. Each such region

constitutes a pick-up and a drop-off location. Crucially, our model incorporates the travel times

between different regions of the city. We also allow customer heterogeneity by allowing customers

in a region to have different destinations. Figure 1 displays an illustrative example. Namely, it

partitions the map of New York City into nine geographical regions. For this example, our model

tracks the movements of cars between the nine regions as they pick up arriving customers and
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Figure 1: A map of New York City partitioned into nine geographical regions.1

deliver them to their destinations. However, before a customer is dropped off, there is a time delay

due to the travel times between the pick-up and drop-off locations. This is an important feature of

our model.

To be specific, the queueing network model has single-server and infinite-server nodes. The

single-server nodes correspond to different regions of the city, whereas the infinite-server nodes model

the travel times between different regions. Cars move between different server nodes according to a

probabilistic routing structure; see Section 2 for details.

The ultimate goal of a ride-hailing system is to maximize its profit. As such, it is important for

a ridesharing company to exert some control over the movement of cars on their platform. However,

to effectively exert control requires first understanding how cars on their platform organically move

throughout the city. This paper provides a first step in this important direction. In particular,

we develop a diffusion approximation framework for ride-hailing systems with travel times. This

approximation framework is justified via a weak convergence result for the queue length processes

corresponding to the cars in the network; see Theorem 1.

1The figure was obtained from Ata et al. (2020).
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1.1 Literature Review

Our paper is related to two streams of literature. The first stream is on the modeling and analysis

of ride-hailing networks, while the second stream is on the heavy traffic analysis of queueing network

models.

The literature on ride-hailing has greatly expanded in recent years. A majority of the opera-

tional work on ride-hailing is on how pricing, matching, and car repositioning can impact system

performance. The effect of pricing in ridesharing has been studied in Banerjee et al. (2015), Banerjee

et al. (2017), Cachon et al. (2017), Besbes et al. (2019), Bimpikis et al. (2019), and Ata et al. (2019),

among others. Banerjee et al. (2015) studies dynamic pricing for a single-region system. They show

that system performance under any dynamic pricing policy cannot exceed the performance under

the optimal static pricing policy. Banerjee et al. (2017) designs pricing policies through a general

approximation framework and show that the approximation ratio of the resulting pricing policy

improves as the number of cars in each region grows. Despite the negative publicity of surge pricing,

Cachon et al. (2017) demonstrate that surge pricing in a ridesharing platform can actually make

both the platform and the customers better off. Besbes et al. (2019) also studies the problem of

pricing in ridesharing systems with price sensitive customers and drivers.

Both Bimpikis et al. (2019) and Ata et al. (2019) use spatial search models to study spatial

pricing in ride-hailing networks with strategic drivers. Predating these papers, Lagos (2000) is one

of the first papers to study spatial search frictions in the taxi industry. This paper highlights how

search frictions endogenously arise as a result of the strategic movement of taxi drivers. Building on

this paper, Bimpikis et al. (2019) studies spacial pricing of ridesharing systems analytically. They

show that when demand patterns in the network are not “balanced,” spatial pricing can be very

beneficial by increasing consumer surplus. On the other hand, Ata et al. (2019) take an empirical

approach to study how spatial pricing and search frictions can impact the taxi market in New York

City. To be specific, they use a mean field model to represent the taxis in the system and show

how origin and origin-destination based pricing can reduce search frictions and increase consumer

surplus. They do so empirically by performing a counterfactual analysis using data of taxi trips in

New York City. Other related papers that study pricing in ridesharing include Chen and Sheldon
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(2016), Castillo et al. (2018), Lu et al. (2018), Hu and Zhou (2019), Gokpinar and Selcuk (2019),

Garg and Nazerzadeh (2019), Hu et al. (2019), and Afèche et al. (2020).

Özkan and Ward (2019), Özkan (2018), and Banerjee et al. (2019) study matching (or dispatch

control) in ridesharing platforms. In particular, Özkan and Ward (2019) models a ridesharing

system as a non-stationary open queueing network where both drivers and customers exogenously

arrive to the system. They propose a matching policy based on the solution to a continuous linear

program and demonstrate that this policy is asymptotically optimal (in the fluid scale) in a large

market regime where the arrival rates of drivers and customers are large. Özkan (2018) studies

both the pricing and matching in ridesharing systems. The author demonstrates that joint pricing

and matching provides significant performance increase over only optimizing over pricing or only

over matching decisions. Finally, Banerjee et al. (2019) studies dispatch control in ridesharing

systems. They model ridesharing systems as a closed queueing network model and proposes a

family of state-dependent dispatch policies called Scaled MaxWeight policies. Under a complete

resource pooling assumption, they show that the proportion of dropped demand under any Scaled

MaxWeight policy decays exponentially. Other related papers include Agatz et al. (2017), Lam and

Liu (2017), Korolko et al. (2019), Guda and Subramanian (2019), Kanoria and Qian (2019), and

Bertsimas et al. (2019).

Other work considers repositioning control, including that of Braverman et al. (2019), Afèche

et al. (2018), and Ata et al. (2020), among others. Braverman et al. (2019) models a ridesharing

system as a closed queueing network and study it under fluid scaling. They focus on “empty-car

routing” where a car without a customer can be repositioned to another region of the city. This

paper proves that the solution to a suitable linear program serves as an upper bound for the utility

obtained under any state-dependent routing policy in the finite-car system. From a modeling

perspective, Braverman et al. (2019) is closely related to ours because both explicitly model the

travel times between city regions. However, an important difference is that our work allows for

stochastic variability, while Braverman et al. (2019) studies a fluid-based model. On the other hand,

Afèche et al. (2018) studies both demand-side admission control of customers as well as supply-side

repositioning control of cars. In particular, they develop several insights on the interplay between

centralized and de-centralized admission and repositioning control on the effect they have on the
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system. Contrary to the previous two papers, Ata et al. (2020) considers a ride-hailing system

with both repositioning and matching control. In particular, they model a ridesharing system as a

stochastic processing network where the activities in the network correspond to repositioning cars

from one area to another and dynamically matching customers with cars. By employing the general

approach outlined in Harrison (2003), Ata et al. (2020) proposes a solution to the original stochastic

control problem by studying a the related Brownian control problem, which arises as a heavy traffic

approximation to the original system. Other related papers include He et al. (2019) and Hosseini

et al. (2020).

On the other hand, from a methodological perspective our paper involves the analysis of

queueing network models, but more specifically on the asymptotic analysis of closed queueing

networks containing infinite-server nodes. Related work includes that of Krichagina and Puhalskii

(1997), Kogan and Lipster (1993), Kogan et al. (1986), and Smorodinskii (1986). For example,

Krichagina and Puhalskii (1997) studies a closed queueing model containing one single-server queue

and one infinite-server queue (with a general service time distribution), and derive heavy traffic

limits. On the other hand, Kogan and Lipster (1993) study a closed queueing network with many

single-server queues and one infinite-server queue. In that paper, all the single-server queues

except one are in a “light-usage regime,” while the other single-server queue is studied in both

a “moderate-usage regime” and a “heavy-usage regime.” They prove a state-space collapse result

for the single-server queues in the light-usage regime, but prove diffusion approximation results

for the single-server queue in the moderate-usage and heavy-usage regimes. Limit results for the

queue length processes in closed queueing results are also established in the latter two papers Kogan

et al. (1986) and Smorodinskii (1986). Other papers that employ a similar type of analysis to ours

include Ata and Kumar (2005), Ata and Lin (2008), Ata and Olsen (2009, 2013), and Reed and

Ward (2008), among others.

To the best of our knowledge, this is the first paper to develop a diffusion approximation for

a ride-hailing system while incorporating travel times between regions. Ata et al. (2020) also

proposes a diffusion approximation for ride-sharing systems,2 but does not incorporate travel times.

Travel times are important from a practical perspective. However, with the exception of Braverman

2We are not aware of any other work proving diffusion approximations for ride-hailing systems.
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et al. (2019), most of the ride-hailing literature appears to ignore them effectively by assuming

instantaneous pick-up and drop-off of customers. Our work builds on but differs from Braverman

et al. (2019). Namely, we model the uncertainty through the second moments of stochastic primitives,

whereas Braverman et al. (2019) work with a deterministic model.

The rest of the paper is organized as follows. Section 2 formalizes our ridesharing model

by introducing the model primitives and making a sample-path construction of the queue-length

processes describing our ridesharing network. Section 3 puts forth our heavy traffic assumption and

diffusion scaling regime, and states the main result of the paper (Theorem 1). Section 4 outlines the

main tools needed to prove Theorem 1. Section 5 is devoted to a proof of Theorem 1, which involves

proving convergence of the fluid scaled processes. Section 6 concludes and discusses future research.

Relevant notation and technical preliminaries are given in Appendix A. Proofs of the results in

Section 4, as well as all auxiliary results and derivations, are given in Appendices B, C, and D.

2 The Ridesharing Model

The model has three key components: (i) J city regions where customers are picked up from and

dropped off to, (ii) K travel times that correspond to the time that rides from one city region

to another take, and (iii) a probabilistic routing structure that governs movement of cars. To be

more specific, our model contains two levels of probabilistic routing. The first level is from the city

regions to travel time nodes, while the second level is from travel time nodes to city regions. In the

first level, a customer arriving to region j ∈ [J] requests a ride requiring travel time k ∈ [K] with

probability pjk. In the second level, a car taking travel node k will, with probability qkj , deliver the

customer to region j. It should be noted that the arbitrary nature of the routing structure and

the arbitrary number of travel nodes makes our model almost completely general. In particular,

our model subsumes the K = J2 case, where an arriving customer to region j will get routed to

region j′ ∈ [J] with probability pjj′ . This occurs when the travel times between any two regions of

the city are different. The two-level probabilistic routing with K travel times not only allows for

arbitrarily general routing structures but also provides modeling flexibility. It also can help lower

the dimension of the state space.

6



Alwan and Ata: Diffusion Approximations for Ridesharing Systems with Travel Times

Each city region is modeled by a single-server queue, where a service completion corresponds to

a customer arrival to the region who is subsequently picked up by a car. On the other hand, the K

travel time nodes are modeled by infinite-server queues. A service completion at an infinite-server

queue corresponds to a car finishing its travel with a customer from the pick-up location to the

drop-off location.

In what follows, we consider a sequence of systems indexed by the total number of cars n. Each

system is a closed queueing network with J single-server queues, K infinite-server queues, and the

probabilistic routing structure mentioned above. We study this sequence of systems in the heavy

traffic asymptotic regime as n →∞. A superscript of n will be attached to various quantities of

interest to indicate they correspond to the nth system.

2.1 Model Primitives

The service rate at a single-server queue reflects the demand rate at the corresponding city region.

We consider a regime in which both the number of cars and the demand gets large. Thus, the

service rate µnj at the single-server queue j ∈ [J] in the nth system is given by

µnj = nµj , (1)

where µj > 0 is a fixed parameter for j ∈ [J]. The service rates at the infinite-server queues do not

vary with n. In particular, the service rate of infinite server k ∈ [K] is denoted by ηk > 0.

To facilitate the description of the system dynamics in Section 2.2, we define the following

Poisson processes (one for each queue): For j ∈ [J] and k ∈ [K] we let

Nj = {Nj(t) ∶ t ≥ 0} and Mk = {Mk(t) ∶ t ≥ 0} (2)

be independent rate-one Poisson processes.

To model the probabilistic routing of cars, we take as given the stochastic matrices

P = (pjk) ∈ RJ×K and Q = (qkj) ∈ RK×J (3)

representing routing from single-server queues to infinite-server queues and from infinite-server
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queues to single-server queues, respectively. To be more specific, for j ∈ [J] and k ∈ [K] we let

φj = {φj(l) ∶ l ≥ 1} and ψk = {ψk(l) ∶ l ≥ 1} (4)

denote independent sequences of i.i.d. random (routing) vectors. Their probability distributions are

given by

P (φj(1) = ek) = pjk and P (ψk(1) = ej) = qkj , (5)

where ek and ej are the kth and jth standard unit basis vector in RK and RJ , respectively. We

assume that these random routing vectors are independent of all other stochastic model primitives.

The associated cumulative routing processes Φjk = {Φjk(m) ∶m ≥ 1} and Ψkj = {Ψkj(m) ∶m ≥ 1}

are defined by the following:

Φjk(m) ∶=
m

∑
l=1

φjk(l) and Ψkj(m) ∶=
m

∑
l=1

ψkj(l), (6)

where φjk(l) and ψkj(l) are the kth and jth components of φj(l) and ψk(l), respectively. In

particular, Φjk(m) represents the total number of customers that are routed from single-server

queue j to infinite-server queue k among the first m customers arriving to region j. The expression

Ψkj(m) can be interpreted similarly.

2.2 The System State and Its Evolution

For j ∈ [J] we denote by Qnj (t) the number of jobs in the jth single-server queue at time t in the

nth system. Similarly, for k ∈ [K] we denote by V n
k (t) the number of jobs in the kth infinite-server

queue at time t in the nth system. Equations (8) – (9) below define these processes Qnj and V n
k

in the natural way. Also, we take as given random variables Qnj (0) and V n
k (0) representing the

initial number of cars in the network. We assume that the collection of these random variables is

independent of all other stochastic primitives and that

J

∑
j=1

Qnj (0) +
K

∑
k=1

V n
k (0) = n, a.s., (7)

as required for any closed system.
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By simple conservation of flow, we write

Qnj (t) = Qnj (0) +Anj (t) −Dn
j (t), j ∈ [J], (8)

V n
k (t) = V n

k (0) +Enk (t) − F
n
k (t), k ∈ [K], (9)

where Anj = {Anj (t) ∶ t ≥ 0} and Dn
j = {Dn

j (t) ∶ t ≥ 0} denote the arrival and departure processes for

single-server queue j. Similarly, Enk = {Enk (t) ∶ t ≥ 0} and Fnk = {Fnk (t) ∶ t ≥ 0} denote the arrival and

departure processes for infinite-server queue k. That is, Anj tracks the total number of cars that

have arrived to region j, while Dn
j tracks the total number of cars that have departed from region j

with a customer. (The processes Enk and Fnk are interpreted similarly.) The following equations

define these arrival and departure processes:

Anj (t) ∶=
K

∑
k=1

Ψkj (Fnk (t)) , (10)

Enk (t) ∶=
J

∑
j=1

Φjk (Dn
j (t)) , (11)

Dn
j (t) ∶= Nj (nµjTnj (t)) , (12)

Fnk (t) ∶=Mk (ηk
ˆ t

0
V n
k (s)ds) , (13)

where Φjk and Ψkj are the cumulative routing processes defined in Equation (6) and where

Tnj = {Tnj (t) ∶ t ≥ 0} (14)

is the busy time process for the jth single-server queue. To be specific, Tnj (t) is the cumulative

amount of time the server is busy over [0, t] at single-server queue j ∈ [J]. The corresponding

idleness process Inj = {Inj (t) ∶ t ≥ 0} at single-server queue j is defined by

Inj (t) ∶= t − Tnj (t). (15)

Note that by Equations (7) and (10) – (13), it is straightforward to verify that

J

∑
j=1

Qnj (t) +
K

∑
k=1

V n
k (t) = n, a.s. for all t ≥ 0. (16)

We assume that the following hold for each j ∈ [J]:

Inj is continuous and nondecreasing with Inj (0) = 0, (17)
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ˆ ∞

0
1
{Qn

j (s)>0}
dInj (s) = 0, (18)

Qnj (t) ≥ 0 for all t ≥ 0, (19)

Inj (t) − Inj (s) ≤ t − s for all 0 ≤ s ≤ t. (20)

Clearly, we must have Qj(t) ≥ 0 for j ∈ [J]. Also, we restrict attention to work-conserving policies.

That is, the server idleness does not increase as long as the queue is not empty. These are reflected in

Equations (18) – (19). Lastly, Equations (17) and (20) are natural consequences of the interpretation

of Inj as server idleness.

3 The Main Result: A Heavy Traffic Limit Theorem

As a preliminary to stating our main result, we first introduce the heavy traffic assumption.

Assumption 1 (Heavy Traffic Assumption). The following conditions hold. First,

K

∑
k=1

J

∑
i=1

µipikqkj = µj for j ∈ [J]. (21)

Second, letting mk = η−1
k ∑

J
j=1 µjpjk for k ∈ [K],

K

∑
k=1

mk = 1. (22)

Roughly speaking, the first condition assumes that every single-server is fully utilized, whereas

the second condition corresponds to assuming almost all cars are in transit.3 To elaborate on the

first condition, note that nµipik is the rate of jobs from single-server queue i to infinite-server queue

k, i.e., the rate of customer arrivals into region i that require travel time k. The sum ∑Ji=1 nµipik

therefore represents the total rate of jobs leaving the city regions that require travel time k. Then,

the expression qkj∑Ji=1 nµipik represents the rate of cars entering region j from travel node k, and

thus the entire sum ∑Kk=1 qkj∑
J
i=1 nµipik represents the total rate of cars entering region j from

travel nodes. Because nµj is the customer arrival rate to region j, the first condition stats the

3These heavy traffic conditions can easily be generalized to limit conditions. To state it, suppose that
µj depends on n, for which we write µn

j , and that µn
j → µj ∈ R as n →∞ for each j ∈ [J]. Then Equation

(21) can be replaced with the following condition:
√
n [∑K

k=1∑
J
i=1 µ

n
i pikqkj − µn

j ]→ cj ∈ R for all j ∈ [J]. The
main convergence result (Theorem 1) remains unchanged, except that we have an additional drift term cj . A
similar limit condition can be used in place of Equation (22).
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arrival rate of cars is balanced out by the customer demand in each region of the city.

We expect the first condition to hold in large cities under optimal spatial pricing provided

the demand is elastic. To be more specific, if it was the case that for some region j that

∑Kk=1∑
J
i=1 µipikqkj ≫ µj , then the supply of cars in region j greatly exceeds customer demand.

By decreasing the price for rides requested from region j, more people in region j will switch from

their current form of transportation to ridesharing as their means for travel. This will increase

the customer arrival rate µj and would eventually balance out supply. It would also increase the

profit because demand is elastic. On the other hand, if it was the case that for some region j

that ∑Kk=1∑
J
i=1 µipikqkj ≪ µj , then customer demand greatly exceeds the supply of cars in region j.

In this case, the ridesharing platform could increase prices for rides requested in region j, while

maintaining the current prices in all other regions i ∈ [J] ∖ {j}.

To shed light on the second condition, note that the arrival rate to the kth infinite-server queue

is n∑Jj=1 µjpjk whereas its service rate is ηk. Based on intuition from the classical M/M/∞ queue,

we expect the steady-state average queue length at the kth infinite-server to be n∑Jj=1 µjpjk/ηk.

Thus, the expected fraction of jobs at the kth infinite-server is mk. So the condition ∑Kk=1mk = 1

means (almost) all jobs are at the infinite-server queues, i.e., (almost) all cars are in transit. This is

consistent with the first condition because of the following: For each single-sever queue, the arrival

and service rates are equal and of order n. Thus, by the intuition from the central limit theorem,

we expect the queue lengths to be of order
√
n for each single-server queue. Consequently, the total

number of jobs in the single-server queues is of order
√
n, meaning (almost) all jobs are at the

infinite-server queues because this is a closed network.

To facilitate the analysis to follow, we next define the following diffusion and fluid scaled

processes:

Diffusion Scaled Processes: For j ∈ [J], k ∈ [K], and t ≥ 0, let

Q̂nj (t) ∶=
Qnj (t)√

n
, (23)

V̂ n
k (t) ∶=

V n
k (t) − nmk√

n
, (24)

Înj (t) ∶=
√
nInj (t), (25)
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T̂nj (t) ∶=
√
nTnj (t), (26)

Φ̂n
jk (t) ∶=

Φjk (⌊nt⌋) − pjknt√
n

, (27)

Ψ̂n
kj (t) ∶=

Ψkj (⌊nt⌋) − qkjnt√
n

, (28)

N̂n
j (t) ∶=

Nj (nt) − nt√
n

, (29)

M̂n
k (t) ∶= Mk (nt) − nt√

n
. (30)

Fluid Scaled Processes: For j ∈ [J], k ∈ [K], and t ≥ 0, let

Q̄nj (t) ∶=
Q̂nj (t)√

n
, (31)

V̄ n
k (t) ∶=

V̂ n
k (t)
√
n
, (32)

¯̄V n
k (t) ∶=

V n
k (t)
n

, (33)

N̄n
j (t) ∶=

Nj(nt)
n

, (34)

M̄n
k (t) ∶=

Mk(nt)
n

. (35)

By applying the scaling in Equations (23) – (35) and using the heavy traffic conditions, it is

straightforward to show that the following diffusion scaled system equations hold:

Q̂nj (t) = Q̂nj (0) +
K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂n

j (µjTnj (t))

+
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) +

K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds + µj Înj (t), (36)

V̂ n
k (t) = V̂ n

k (0) +
J

∑
j=1

Φ̂n
jk (N̄

n
j (µjTnj (t))) − M̂n

k (ηk
ˆ t

0

¯̄V n
k (s)ds)

+
J

∑
j=1

pjkN̂
n
j (µjTnj (t)) − ηk

ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t). (37)

See Appendix D for a straightforward, albeit tedious, derivation of the diffusion scaled system

equations (36) and (37). Defining

ξ̂nj (t) ∶= Q̂nj (0) +
K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂n

j (µjTnj (t))

+
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) , (38)

12



Alwan and Ata: Diffusion Approximations for Ridesharing Systems with Travel Times

ζ̂nk (t) ∶= V̂
n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjTnj (t))) − M̂n

k (ηk
ˆ t

0

¯̄V n
k (s)ds) +

J

∑
j=1

pjkN̂
n
j (µjTnj (t)) , (39)

we see that Equations (36) – (37) can be rewritten as follows:

Q̂nj (t) = ξ̂nj (t) +
K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds + µj Înj (t), (40)

V̂ n
k (t) = ζ̂nk (t) − ηk

ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t). (41)

Furthermore, by applying the fluid scaling in Equations (31) – (32) to Equations (40) – (41), we

obtain the following fluid scaled system equations:

Q̄nj (t) = ξ̄nj (t) +
K

∑
k=1

qkjηk

ˆ t

0
V̄ n
k (s)ds + µjInj (t), (42)

V̄ n
k (t) = ζ̄nk (t) − ηk

ˆ t

0
V̄ n
k (s)ds −

J

∑
j=1

pjkµjI
n
j (t), (43)

where

ξ̄nj (t) ∶= n−1/2ξ̂nj (t), (44)

ζ̄nk (t) ∶= n
−1/2ζ̂nk (t). (45)

We make the following assumptions on the initial conditions:

Assumption 2 (Joint Convergence of the Initial Conditions). As n→∞,

(Q̂n1(0), . . . , Q̂nJ(0), V̂ n
1 (0), . . . , V̂ n

K(0))⇒ (Q1(0), . . . ,QJ(0), V1(0), . . . , VK(0)) ∈DJ+K . (46)

The result below establishes the joint convergence of the diffusion scaled queue length pro-

cesses and the idleness processes at the single-server stations to a multidimensional diffusion

process. To facilitate the statement of the result, let (ξ∗, ζ∗) ≡ (ξ∗1 , . . . , ξ∗J , ζ∗1 , . . . , ζ∗K) be a

(0,Σ) Brownian motion with initial state (ξ∗(0), ζ∗(0)) = (Q(0), V (0)), where (Q(0), V (0)) ≡

(Q1(0), . . . ,QJ(0), V1(0), . . . , VK(0)). Note by construction and Equation (46) that ξ∗(0) ≥ 0 and

∑Jj=1 ξ
∗
j (0) +∑

K
k=1 ζ

∗
k (0) = 0. The covariance matrix Σ ∈ R(J+K)×(J+K) is given by

Σj,j =
K

∑
k=1

qkj(1 − qkj)ηkmk + µj +
K

∑
k=1

q2
kjηkmk, j ∈ [J], (47)

ΣJ+k,J+k =
J

∑
j=1

pjk(1 − pjk)µj + ηkmk +
J

∑
j=1

p2
jkµj , k ∈ [K], (48)
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Σi,j =
K

∑
k=1

qkiqkjηkmk, i, j ∈ [J], i ≠ j, (49)

Σj,J+k = −pjkµj − qkjηkmk, j ∈ [J], k ∈ [K], (50)

ΣJ+l,J+k =
J

∑
j=1

pjlpjkµj , l, k ∈ [K], l ≠ k. (51)

Theorem 1 (Joint Convergence of Diffusion Scaled Processes). We have that as n→∞,

(Q̂n, În, V̂ n)⇒ (Q∗, I∗, V ∗) in D2J+K , (52)

where Q∗, I∗, and V ∗ are multidimensional diffusion processes satisfying the following for all j ∈ [J],

k ∈ [K], and t ≥ 0:

Q∗
j (t) = ξ∗j (t) +

K

∑
k=1

qkjηk

ˆ t

0
V ∗
k (s)ds + µjI∗j (t) ≥ 0, (53)

V ∗
k (t) = ζ∗k (t) − ηk

ˆ t

0
V ∗
k (s)ds −

J

∑
j=1

pjkµjI
∗
j (t), (54)

ˆ ∞

0
1
{Q∗

j (t)>0}
dI∗j (t) = 0. (55)

4 Auxiliary Results

This section establishes the existence of suitably defined continuous functions that will aid in the

proof of Theorem 1 via a continuous mapping argument; see Appendix B for the proofs of the results

in this section. To that end, fix ξ ≡ (ξ1, . . . , ξJ) ∈DJ and ζ ≡ (ζ1, . . . , ζK) ∈DK such that

J

∑
j=1

ξj(t) +
K

∑
k=1

ζk(t) = 0, for all t ≥ 0, (56)

ξj(0) ≥ 0, for all j ∈ [J]. (57)

The following collection of equations corresponds to our closed ridesharing network with J single-

server stations and K infinite-server stations. That is, for j ∈ [J], k ∈ [K], and t ≥ 0 we consider the

following set of equations:

xj(t) = ξj(t) +
K

∑
k=1

qkjηk

ˆ t

0
yk(s)ds + µjuj(t) ∈ [0,∞), (58)

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjkµjuj(t), (59)
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J

∑
j=1

xj(t) +
K

∑
k=1

yk(t) = 0, (60)

uj is nondecreasing with uj(0) = 0, (61)ˆ ∞

0
1{xj(t)>0} duj(t) = 0. (62)

We first establish the existence and uniqueness of solutions to these equations (for fixed ξ and ζ):

Proposition 1. For every (ξ, ζ) ∈ DJ+K satisfying Equations (56) – (57), there exists a unique

(x,u, y) ∈D2J+K satisfying Equations (58) – (62).

The following is now immediate from Proposition 1:

Corollary 1. There exists a unique tuple of functions (f, g, h) ∶DJ+K →D2J+K such that whenever

(ξ, ζ) ∈ DJ+K satisfies Equations (56) – (57), (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)) satisfies Equations (58) –

(62).

See Appendix B for a characterization of these functions f , g, and h. The final result of this

section establishes the continuity of the mappings defined in Corollary 1:

Proposition 2. The mapping (f, g, h) ∶DJ+K →D2J+K from Corollary 1 is continuous when both

the domain and range spaces are endowed with the Skorokhod J1 topology.

5 Proof of Theorem 1

This section contains the main convergence results of this paper, culminating with a proof of

Theorem 1. To begin, Section 5.1 proves convergence of the fluid scaled processes. These results are

necessary because several of the fluid scaled processes serve as random time changes in the diffusion

scaled equations. Finally, in Section 5.2 convergence of the process (ξ̂n, ζ̂n) [given in Equations (38)

– (39)] is proven. This, combined with a continuous mapping argument, allows us to complete the

proof of Theorem 1.

5.1 Convergence of Fluid Scaled Processes

We begin by establishing convergence of the fluid scaled processes.
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Lemma 1. As n→∞, (ξ̄n, ζ̄n)⇒ 0 ∈DJ+K .

Proof. To prove that (ξ̄n, ζ̄n)⇒ 0, it suffices to show [by, for example, Theorem 11.4.5 in Whitt

(2002)] that ξ̄nj ⇒ 0 and ξ̄nk ⇒ 0 for all j ∈ [J] and k ∈ [K]. On the other hand, to prove that ξ̄nj ⇒ 0

and ξ̄nk ⇒ 0, it is sufficient to show that for all T > 0,

∥ξ̄nj ∥T ⇒ 0 and ∥ζ̄nk ∥T ⇒ 0 (63)

as random variables; see Lemma 5 in Appendix D for a proof of this claim. By Equations (38) –

(39), the triangle inequality, and the facts that
´ t

0
¯̄V n
k (s)ds ≤ t and Tnj (t) ≤ t for all t ≥ 0, one readily

checks that for all T > 0,

∥ξ̂nj ∥T ≤ ∥Q̂nj (0)∥T +
K

∑
k=1

∥Ψ̂n
kj (M̄

n
k (ηk⋅)) ∥T + ∥N̂n

j (µj ⋅) ∥T +
K

∑
k=1

∥M̂n
k (ηk⋅) ∥T , (64)

∥ζ̂nk ∥T ≤ ∥V̂ n
k (0)∥T +

J

∑
j=1

∥Φ̂n
jk (N̄

n
j (µj ⋅)) ∥T + ∥M̂n

k (ηk⋅)∥T +
J

∑
j=1

∥N̂n
j (µj ⋅)∥T . (65)

A straightforward application of Donsker’s theorem, the functional central limit theorem for renewal

processes, the random time change theorem, and the continuous mapping theorem can be used to

show that the right hand sides of Equations (64) and (65) converge weakly to a nondegenerate limit.

By this and the fact that ξ̄nj = n−1/2ξ̂nj and ζ̄nk = n−1/2ζ̂nk , we obtain Equation (63). See Appendix D

for additional details.

Lemma 2. As n→∞, (Q̄n, In, V̄ n)⇒ 0 ∈DJ+K

Proof. Recall that [see Equations (42) – (43)]

Q̄nj (t) = ξ̄nj (t) +
K

∑
k=1

qkjηk

ˆ t

0
V̄ n
k (s)ds + µjInj (t), (66)

V̄ n
k (t) = ζ̄nk (t) − ηk

ˆ t

0
V̄ n
k (s)ds −

J

∑
j=1

pjkµjI
n
j (t). (67)

Note that the process (ξ̄n, ζ̄n) satisfies

ξnj (0) = Q̄nj (0) ≥ 0, a.s. for all j ∈ [J]. (68)

Recall that by Equation (17) the process Inj is nondecreasing with Inj (0) = 0. Furthermore, by
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Equation (18),

ˆ ∞

0
1
{Q̄n

j (t)>0}
dInj (t) =

ˆ ∞

0
1
{n−1Qn

j (t)>0}
dInj (t) =

ˆ ∞

0
1
{Qn

j (t)>0}
dInj (t) = 0. (69)

By Equations (66) – (69) and the uniqueness in Proposition 1 it follows that

(Q̄n, In, V̄ n) = (f (ξ̄n, ζ̄n) , g (ξ̄n, ζ̄n) , h (ξ̄n, ζ̄n)) . (70)

So, by Proposition 2, Lemma 1, the continuous mapping theorem, and Equation (70) we have

(Q̄n, In, V̄ n) = (f (ξ̄n, ζ̄n) , g (ξ̄n, ζ̄n) , h (ξ̄n, ζ̄n))⇒ (f (0) , g (0) , h (0)) . (71)

To complete the proof, we must show that f (0) = 0, g (0) = 0, and h (0) = 0. If we can show that

V̄ ∶= h (0) = 0, then by definition of Q̄ ∶= f (0) and I ∶= g (0),

Q̄j = φ(πj ○ 0 +
K

∑
k=1

qkjηk

ˆ ⋅

0
V̄k(s)ds) = φ(0 +

K

∑
k=1

qkjηk

ˆ ⋅

0
0ds) = φ (0 + 0) = 0,

Ij = µ−1
j ψ (πj ○ 0 +

K

∑
k=1

qkjηk

ˆ ⋅

0
V̄k(s)ds) = µ−1

j ψ (0 +
K

∑
k=1

qkjηk

ˆ ⋅

0
0ds) = µ−1

j ψ (0 + 0) = 0,

and the proof would be complete. By definition of V̄ ∶= h (0), for any t ≥ 0 we have

V̄k(t) = −ηk
ˆ t

0
V̄k(s)ds −

J

∑
j=1

pjkψ (
K

∑
l=1

qljηl

ˆ ⋅

0
V̄l(s)ds)(t), (72)

for all k = 1, . . . ,K. But, for T > 0 fixed and any 0 ≤ t ≤ T ,

∥V̄k∥t ≤ ηk∥
ˆ ⋅

0
V̄k(s)ds∥

t
+

J

∑
j=1

∥ψ (
K

∑
l=1

qljηl

ˆ ⋅

0
V̄l(s)ds)∥

t

≤ η
ˆ t

0
∥V̄k∥s ds +

J

∑
j=1

K

∑
l=1

ηl∥
ˆ ⋅

0
V̄l(s)ds∥

t

≤ η
ˆ t

0
max

1≤k≤K
∥V̄k∥s ds + ηJK

ˆ t

0
max

1≤k≤K
∥V̄k∥s ds

≤ 2ηJK

ˆ t

0
max

1≤k≤K
∥V̄k∥s ds, (73)

where η ∶= max1≤k≤K ηk. Therefore, by Equation (73),

max
1≤k≤K

∥V̄k∥t ≤ 2ηJK

ˆ t

0
max

1≤k≤K
∥V̄k∥s ds. (74)
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By Gronwall’s inequality [see Lemma 4.1 in Pang et al. (2007)] and Equation (74), it follows that

max
1≤k≤K

∥V̄k∥T = 0. (75)

Since T was arbitrary, Equation (75) implies that V̄ ≡ 0. The proof is complete.

Corollary 2. As n→∞, Tn ⇒ e ∈DJ , where e(t) = (t, . . . , t) for all t ≥ 0.

Proof. By definition, Tn = e − In. The result then follows by Lemma 2 since In ⇒ 0.

5.2 Convergence of Diffusion Scaled Processes

Lemma 3. As n → ∞, (ξ̂n, ζ̂n) ⇒ (ξ∗, ζ∗) ∈ DJ+K , where (ξ∗, ζ∗) is a (0,Σ) Brownian motion

with initial state (Q(0), V (0)) and covariance matrix Σ given by Equations (47) – (51).

Proof. For this proof, let e ∶ [0,∞) → [0,∞) denote the one-dimensional identity map e(t) = t.

Recall from Equations (38) – (39) that ξ̂nj and ζ̂nk are given by the following:

ξ̂nj (t) ∶= Q̂nj (0) +
K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂n

j (µjTnj (t)) +
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) ,

ζ̂nk (t) ∶= V̂
n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjTnj (t))) − M̂n

k (ηk
ˆ t

0

¯̄V n
k (s)ds) +

J

∑
j=1

pjkN̂
n
j (µjTnj (t)) .

Note that by Lemma 2, Corollary 2, and derivations in Appendix D, we have the following

convergence for the fluid scaled processes: M̄n
k (ηk ⋅)⇒ ηke, N̄

n
j (µj ⋅)⇒ µje, T

n
j ⇒ e, and ¯̄V n

k ⇒mk

(note that ¯̄V n
k (t) = V̄ n

k (t) +mk). In addition, we have the following convergence for the diffusion

scaled processes: Ψ̂n
kj ⇒

√
qkj(1 − qkj)Bkj , Φ̂n

kj ⇒
√
pjk(1 − pjk)Bjk, M̂n

k (ηk ⋅) ⇒ η
1/2
k Bk, and

N̂n
j (µj ⋅)⇒ µ

1/2
j Bj , where Bkj , Bjk, Bk, and Bj are standard Brownian motions. Moreover, note

that the function H ∶D →D defined by

H(x)(t) =
ˆ t

0
x(s)ds (76)

is continuous in the Skorokhod topology [see page 229 in Pang et al. (2007)], which implies that

H( ¯̄V n
k )⇒H(mk) =mke. (77)

By the above convergence results, Theorems 11.4.4 and 11.4.5 in Whitt (2002), and Equation (46)
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(and the fact that all stochastic primitives are independent), the joint processes

(Q̂n1(0), . . . , Q̂nJ(0),V̂ n
1 (0), . . . , V̂ n

K(0)Ψ̂n
11, . . . , Ψ̂

n
1J , . . . , Ψ̂

n
K1, . . . , Ψ̂

n
KJ ,

Φ̂n
11, . . . , Φ̂

n
1K , . . . , Φ̂

n
J1, . . . , Φ̂

n
JKN̂

n
1 . . . , N̂

n
J , M̂

n
1 , . . . , M̂

n
K) (78)

and

(Tn1 , . . . , TnJ , ¯̄V n
1 , . . . ,

¯̄V n
K , N̄

n
1 , . . . , N̄

n
J , M̄

n
1 , . . . , M̄

n
K) (79)

converge weakly to their appropriate limits. By the convergence of Equations (78) and (79),

the random time change theorem, and the continuous mapping theorem, we get the joint weak

convergence of

(ξ̂n1 , . . . , ξ̂nJ , ζ̂n1 , . . . , ζ̂nK)⇒ (ξ∗1 , . . . , ξ∗J , ζ∗1 , . . . , ζ∗K) . (80)

It is straightforward, but tedious, to derive the covariance matrix Σ, so we omit those details

here.

Finally, we conclude with a proof of Theorem 1:

Proof of Theorem 1. It is straightforward to show that the process (ξ̂n, ζ̂n) satisfies

ξ̂nj (0) = Q̂nj (0) ≥ 0, a.s. for all j ∈ [J], (81)

J

∑
j=1

ξ̂nj (t) +
K

∑
k=1

ζ̂nk (t) = 0, a.s. for all t ≥ 0. (82)

Similar to the proof of Lemma 2, it is elementary to show that Înj is nondecreasing with Înj (0) = 0

and that

ˆ ∞

0
1
{Q̂n

j (t)>0}
dÎnj (t) = 0,

implying (by the uniqueness in Proposition 1) that

(Q̂n, În, V̂ n) = (f (ξ̂n, ζ̂n) , g (ξ̂n, ζ̂n) , h (ξ̂n, ζ̂n)) . (83)

By Lemma 3, Proposition 2, and the continuous mapping theorem,

(Q̂n, În, V̂ n) = (f (ξ̂n, ζ̂n) , g (ξ̂n, ζ̂n) , h (ξ̂n, ζ̂n))⇒ (f (ξ∗, ζ∗) , g (ξ∗, ζ∗) , h (ξ∗, ζ∗)) . (84)
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Since inequalities are preserved under weak convergence, Equations (46) and (81) imply that

ξ∗j (0) = Qj(0) ≥ 0, a.s. for all j ∈ [J]. (85)

It also follows from Lemma 3 and Equation (82) that

J

∑
j=1

ξ∗j (t) +
K

∑
k=1

ζ∗k (t) = 0, a.s. for all t ≥ 0. (86)

Letting (Q∗, I∗, V ∗) ∶= (f (ξ∗, ζ∗) , g (ξ∗, ζ∗) , h (ξ∗, ζ∗)), the proof is complete by Equations (85) –

(86) and Proposition 1. (The distributional description of (ξ∗, ζ∗) comes from Lemma 3.)

6 Conclusion

This paper proposes a closed queueing system to model the movement of cars in a ride-hailing

network. Under the assumption that the supply of cars and customer demand is perfectly balanced,

our results show that the distribution of cars in the network can be approximated by a diffusion

process. Crucially, this paper incorporates travel times into the ridesharing model. Modeling travel

times is important because, as is often the case in large cities, drivers spend a non-trivial amount of

time on the road delivering customers to their destinations. Ignoring these travel times can lead to

inaccuracies when tracking cars in a city.

The results in this paper effectively assume that the cars in the ride-hailing platform are self-

driving because we do not model strategic driver behavior. Therefore, a worthwhile extension to

this work would be to incorporate strategic behavior into the model because, in many settings,

drivers are autonomous and forward looking.
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A Notation and Technical Preliminaries

For a function f ∶ X → Y and a subset S ⊆ X, we denote by f ∣S the restriction of f to S. The

indicator function for a subset S ⊆ X is written as 1S . The set of positive integers is denoted by

N = {1,2,3, . . .} and we write [n] = {1,2, . . . , n} for n ∈ N. For k ∈ [n], the kth unit basis vector in

Rn is denoted by ek, which has one in the kth component and zeros elsewhere. For a, b ∈ R, we let

a ∨ b = max{a, b} and a ∧ b = min{a, b}, and let ⌊a⌋ denote the largest integer less than or equal to

a. For l = 1, . . . , k, the lth projection map πl ∶ Rk → R is given by πl(x) = xl, where xl is the lth

component of x ∈ Rk. The abbreviation a.s. stands for “almost surely” and the notation
p
→ means

“converges in probability.”

For each positive integer k ≥ 1, we denote by Dk ≡ D ([0,∞),Rk) the set of all functions

x ∶ [0,∞)→ Rk that are right continuous on [0,∞) and have left limits on (0,∞). The identically

zero function in Dk will be denoted by 0. Similarly, for each positive integer k ≥ 1 and positive real

number T > 0, we denote by Dk
T ≡ D ([0, T ],Rk) the set of all functions x ∶ [0, T ] → Rk that are

right continuous on [0, T ) and have left limits on (0, T ]. When the space Dk
T is endowed with the

norm

∥x∥T,k ∶= max
1≤l≤k

sup
0≤t≤T

∣xl(t)∣, (87)

it is a Banach space; for example, see Pestman (1995). When k = 1, we write D1 =D, D1
T =DT , and

∥ ⋅ ∥T,1 = ∥ ⋅ ∥T . The one-sided reflection map on D is given by the pair of functions (ψ,φ) ∶D →D2

defined as follows:

ψ(x)(t) ∶= sup
0≤s≤t

[−x(s)]+ , (88)

φ(x)(t) ∶= x(t) + ψ(x)(t). (89)

For x, y ∈D and T > 0 [see Lemma 13.5.1 in Whitt (2002)], the following inequalities holds:

∥ψ(x) − ψ(y)∥T ≤ ∥x − y∥T , (90)

∥φ(x) − φ(y)∥T ≤ 2∥x − y∥T . (91)

We regard Dk as a topological space with the Skorokhod J1 topology. It is indeed a Polish space
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[see Billingsley (1999)], however, for our purposes, the reader only needs to know what it means for

a sequence of functions to converge in Dk. No further properties of the underlying topology are

used. To that end, a sequence {xn}∞n=1 in Dk converges to an element x ∈ Dk, written xn → x, as

n→∞, if for all continuity points T > 0 of x,

dkT (xn∣[0,T ], x∣[0,T ])→ 0 as n→∞, (92)

where dkT ∶Dk
T ×Dk

T → [0,∞) is given by

dkT (x, y) ∶= inf
λ∈ΛT

{∥x ○ λ − y∥T,k ∨ ∥λ − e∥T} , (93)

where e ∶ [0, T ]→ [0, T ] is the identity map, i.e., e(t) = t, and

ΛT = {λ ∶ [0, T ]→ [0, T ] ∣λ is an increasing homeomorphism} . (94)

Equivalently, Equation (92) can be written with d̃ kT in place of dkT [for example, see page 226 of

Pang et al. (2007) and Billingsley (1999)], where d̃ kT ∶Dk
T ×Dk

T → [0,∞) is given by

d̃ kT (x, y) ∶= inf
λ∈Λ̃T

{∥x ○ λ − y∥T,k ∨ ∥λ̇ − 1∥T} , (95)

where λ̇ is the derivative of λ, 1 is the constant function taking the value one everywhere, and

Λ̃T = {λ ∶ [0, T ]→ [0, T ] ∣λ ∈ ΛT and is absolutely continuous w.r.t. Lebesgue measure} . (96)

As before, when k = 1, we write d1
T = dT and d̃ 1

T = d̃T .

All random variables in this paper are assumed to live on a common probability space (Ω,F , P ).

We denote by Mk the Borel σ-algebra on Dk induced by the Skorokhod J1 topology, so that

(Dk,Mk) forms a measurable space. Each stochastic process in this paper is assumed to be a

measurable function from (Ω,F , P ) to (Dk,Mk), with appropriate dimension k. For a sequence of

stochastic processes {ξn}∞n=1 in Dk, where ξn = {ξn(t) ∶ t ≥ 0}, we write

ξn ⇒ ξ as n→∞ (97)

to mean that the sequence of probability measures on (Dk,Mk) induced by the ξn converge weakly

to the probability measure on (Dk,Mk) induced by the stochastic process ξ; see Billingsley (1999)

and Whitt (2002) for further details.
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B Proofs for Results in Section 4

The following lemma is useful in the proof of Proposition 1; its proof can be found in Appendix C.

To state it, let (ξ, ζ) ∈DJ+K and for k = 1, . . . ,K and t ≥ 0 consider the following equations:

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjkψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds)(t). (98)

Lemma 4. For each (ξ, ζ) ∈DJ+K , there exists a unique y ∈DK satisfying Equation (98).

Below is a proof of Proposition 1:

Proof of Proposition 1. Fix (ξ, ζ) ∈DJ+K satisfying Equations (56) – (57). We first prove existence.

By Lemma 4, there exists a y ∈DK satisfying Equation (98). For j = 1, . . . , J , define

uj ∶= µ−1
j ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds) , (99)

xj ∶= φ(ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds) . (100)

Since y ∈DK , it follows that u ∈DJ and x ∈DJ , so that (x,u, y) ∈D2J+K . It remains to show that

(x,u, y) satisfy Equations (58) – (62). Equation (58) follows from the definitions of u and x in

Equations (99) and (100), respectively, as well as definition of the one-sided reflection map (ψ,φ)

in Equations (88) – (89). Equation (59) holds by the fact that y satisfies Equation (98) and the

definition of u in Equation (99). Equation (60) follows from Equations (56), (58) – (59), and the

fact that

K

∑
k=1

pjk = 1 for all j = 1, . . . , J,

J

∑
j=1

qkj = 1 for all k = 1, . . . ,K.

Equation (61) follows from the definition of u in Equation (99), the definition of ψ in Equation (88),

and Equation (57). Finally, if we let

zj ∶= ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds, (101)

we see that uj = µ−1
j ψ(zj) and xj = φ(zj). Therefore, Equation (62) says that

ˆ ∞

0
1{φ(zj)>0} d (µ−1

j ψ(zj)) (t) = 0, (102)
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which is equivalent to

ˆ ∞

0
1{φ(zj)>0} dψ(zj)(t) = 0. (103)

But Equation (103) holds true by the definition of (ψ,φ) in Equations (88) – (89). Thus, Equation

(62) holds.

We now prove uniqueness. Let (x,u, y), (x̃, ũ, ỹ) ∈D2J+K both satisfy Equations (58) – (62). By

Equation (58),

xj = zj + µjuj ≥ 0, (104)

where zj is given by Equation (101). Similarly, we can write

x̃j = z̃j + µj ũj ≥ 0, (105)

where z̃j is given by Equation (101) (where we replace yl by ỹl). Since (x,u) and (x̃, ũ) satisfy

Equations (61) – (62), it follows that (x,µjuj) and (x̃, µj ũj) satisfy Equations (61) – (62). By this

and Equations (104) – (105), it follows that

µjuj = ψ(zj), (106)

µj ũj = ψ (z̃j) . (107)

It then follows by Equations (59), (101), (106) – (107), and Lemma 4 that yk = ỹk for all k = 1, . . . ,K.

By uniqueness of y, it then follows by Equations (101) and (106) – (107) that uj = ũj for all

j = 1, . . . , J . Finally, by uniqueness of y and u, it follows by Equations (101) and (104) – (105) that

xj = x̃j for all j = 1, . . . , J . This completes the proof.

Before a proof of Proposition 2, we provide a description of the mappings f , g, and h in the

statement of Corollary 1. First, by Lemma 4, we can indirectly write h ∶DJ+K →DK as the unique

mapping sending (ξ, ζ) ∈ DJ+K to h(ξ, ζ) ∈ DK satisfying Equation (98). For our purposes, this

indirect description of h will be enough. On the other hand, the proof of Proposition 1 shows that

the mappings f ∶DJ+K →DJ and g ∶DJ+K →DJ are uniquely given by the following:

f ∶= (ξ, ζ)↦ (φ(πj ○ ξ +
K

∑
l=1

qljηl

ˆ ⋅

0
(πl ○ h(ξ, ζ)) (s)ds))

j=1,...,J

, (108)
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g ∶= (ξ, ζ)↦ (µ−1
j ψ (πj ○ ξ +

K

∑
l=1

qljηl

ˆ ⋅

0
(πl ○ h(ξ, ζ)) (s)ds))

j=1,...,J

. (109)

Proof of Proposition 2. We first prove continuity of f , g, and h separately. Then we use these

results to argue that the joint mapping (f, g, h) is continuous.

Continuity of h. Recall that for each (ξ, ζ) ∈DJ+K the element y = h(ξ, ζ) ∈DK satisfies

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjkψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds)(t) (110)

for all k = 1, . . . ,K and t ≥ 0. Suppose that (ξn, ζn)→ (ξ, ζ) in DJ+K as n→∞ and let T̃ > 0 be a

continuity point of f (ξ, ζ). To complete the proof, we must show that

dK
T̃
(h (ξn, ζn) ∣

[0,T̃ ]
, h(ξ, ζ)∣

[0,T̃ ]
)→ 0 as n→∞, (111)

where dK
T̃

is given by Equation (93). However, by Lemma 5.1 in Ethier and Kurtz (2005), since

(ξ, ζ) ∈ DJ+K , it has at most countably many points of discontinuity. As a result, there exists a

point T > T̃ that is a continuity point of (ξ, ζ). By Lemma 1 on page 167 in Billingsley (1999), it

suffices to show that

dKT (h (ξn, ζn) ∣[0,T ], h(ξ, ζ)∣[0,T ])→ 0 as n→∞, (112)

for then Equation (112) would imply Equation (111). To avoid cumbersome notation, we write

dKT (h (ξn, ζn) , h(ξ, ζ))→ 0 as n→∞ (113)

to mean Equation (112). The remainder of the proof aims at proving Equation (113). However,

since the metrics dKT and d̃ KT are topologically equivalent [see page 22 and Equation (95)], it suffices

to prove Equation (113) with d̃ KT in place of dKT .

Since T > 0 is a continuity point of (ξ, ζ) and (ξn, ζn)→ (ξ, ζ) in DJ+K , there exists a sequence

of homeomorphisms λn ∈ Λ̃T such that

∥ (ξ, ζ) ○ λn − (ξn, ζn) ∥T,J+K ∨ ∥λ̇n − 1∥T → 0 as n→∞. (114)

Letting y = h(ξ, ζ) and yn = h (ξn, ζn), for any 0 ≤ t ≤ T we have:

max
1≤k≤K

∥yk ○ λn − ynk ∥t = max
1≤k≤K

⎡⎢⎢⎢⎢⎣
∥
⎛
⎝
ζk ○ λn − ηk

ˆ λn(⋅)

0
yk(s)ds
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−
J

∑
j=1

pjkψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅

0
yl(s)ds) ○ λn

⎞
⎠

−
⎛
⎝
ζnk − ηk

ˆ ⋅

0
ynk (s)ds −

J

∑
j=1

pjkψ (ξnj +
K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)

⎞
⎠
∥
t

⎤⎥⎥⎥⎥⎦

≤ max
1≤k≤K

⎡⎢⎢⎢⎢⎣
∥ζk ○ λn − ζnk ∥t + η∥

ˆ λn(⋅)

0
yk(s)ds −

ˆ ⋅

0
ynk (s)ds∥

t

+
J

∑
j=1

∥ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅

0
yl(s)ds) ○ λn

− ψ (ξnj +
K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)∥

t

⎤⎥⎥⎥⎥⎦
, (115)

where η ∶= max1≤k≤K ηk. We now bound each of the terms in Equation (115). To that end, first let

MT ∶= max
1≤k≤K

∥yk∥T <∞. (116)

Then by Equation (116) and the chain rule,

∥
ˆ λn(⋅)

0
yk(s)ds −

ˆ ⋅

0
ynk (s)ds∥

t
= ∥
ˆ ⋅

0
yk(λn(s))λ̇n(s)ds −

ˆ ⋅

0
ynk (s)ds∥

t

≤ ∥
ˆ ⋅

0
yk(λn(s)) (λ̇n(s) − 1) ds∥

t

+ ∥
ˆ ⋅

0
(yk(λn(s)) − ynk (s)) ds∥

t

≤ TMT ∥λ̇ − 1∥T +
ˆ t

0
∥yk ○ λn − ynk ∥s ds. (117)

Similar to Equation (117), we have

∥ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅

0
yl(s)ds) ○ λn − ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)∥

t

≤ ∥ξj ○ λn − ξnj ∥T + η
K

∑
l=1

∥
ˆ λn(⋅)

0
yl(s)ds −

ˆ ⋅

0
ynl (s)ds∥

t

≤ ∥ξj ○ λn − ξnj ∥T + η
K

∑
l=1

∥
ˆ ⋅

0
yl (λn(s)) λ̇n(s)ds −

ˆ ⋅

0
ynl (s)ds∥

t

≤ ∥ξj ○ λn − ξnj ∥T + ηKTMT ∥λ̇n − 1∥T + η
K

∑
l=1

ˆ t

0
∥yl ○ λn − ynl ∥s ds, (118)

where the first inequality holds by Equation (90) and the fact that [see Lemma 13.5.2 in Whitt

(2002)]

ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅

0
yl(s)ds) ○ λn = ψ (ξj ○ λn +

K

∑
l=1

qljηj

ˆ λn(⋅)

0
yl(s)ds) . (119)
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By Equations (115) and (117) – (118), it follows that for all 0 ≤ t ≤ T ,

max
1≤k≤K

∥yk ○ λn − ynk ∥t ≤ max
1≤k≤K

⎡⎢⎢⎢⎢⎣
∥ζk ○ λn − ζnk ∥T + ηTMT ∥λ̇ − 1∥T + η

ˆ t

0
∥yk ○ λn − ynk ∥s ds

+
J

∑
j=1

(∥ξj ○ λn − ξnj ∥T + ηKTMT ∥λ̇n − 1∥T + η
K

∑
l=1

ˆ t

0
∥yl ○ λn − ynl ∥s ds)

⎤⎥⎥⎥⎥⎦

≤ max
1≤k≤K

∥ζk ○ λn − ζnk ∥T + ηTMT ∥λ̇ − 1∥T + η
ˆ t

0
max

1≤k≤K
∥yk ○ λn − ynk ∥s ds

+ J max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + ηJKTMT ∥λ̇n − 1∥T

+ ηJK
ˆ t

0
max

1≤k≤K
∥yk ○ λn − ynk ∥s ds

≤ 2J∥ (ξ, ζ) ○ λn − (ξn, ζn)∥DJ+K
T

+ (JK + 1)ηTMT ∥λ̇n − 1∥T

+ 2ηJK

ˆ t

0
max

1≤k≤K
∥yk ○ λn − ynk ∥s ds. (120)

For ε > 0 fixed, let n0 be large enough such that for all n ≥ n0,

2J∥ (ξ, ζ) ○ λn − (ξn, ζn)∥T,J+K < ε

2e2ηJKT
(121)

and that

(JK + 1)ηTMT ∥λ̇n − 1∥T < ε

2e2ηJKT
. (122)

Then by Equations (120) – (122), it follows that for all n ≥ n0,

max
1≤k≤K

∥yk ○ λn − ynk ∥t ≤
ε

e2ηJKT
+ 2ηJK

ˆ t

0
max

1≤k≤K
∥yk ○ λn − ynk ∥s ds for all 0 ≤ t ≤ T. (123)

By Gronwall’s inequality [see Lemma 4.1 in Pang et al. (2007)] and Equation (123), it follows that

max
1≤k≤K

∥yk ○ λn − ynk ∥t ≤
ε

e2ηJKT
e2ηJKt for all 0 ≤ t ≤ T. (124)

In particular, using Equation (124) with t = T , it follows that

∥y ○ λn − yn∥T,K ≡ max
1≤k≤K

∥yk ○ λn − ynk ∥T ≤ ε. (125)

Finally, by Equation (114) let n1 be large enough such that for all n ≥ n1,

∥λ̇n − 1∥T ≤ ε. (126)
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Therefore, by Equations (125) – (126), for all n ≥ max{n0, n1} we have

∥y ○ λn − yn∥T,K ∨ ∥λ̇n − 1∥T ≤ ε, (127)

completing the proof.

Continuity of g. The continuity proof for g [see Equation (109) for its expression] proceeds in

the some way as in the continuity proof for f . Suppose (ξn, ζn) → (ξ, ζ) in DJ+K as n →∞ and

let T > 0 be a continuity point of (ξ, ζ). Then there exists a sequence of homeomorphisms λn ∈ Λ̃T

such that Equation (114) holds. Letting u = g(ξ, ζ), un = g(ξn, ζn), y = h(ξ, ζ)) and yn = h (ξn, ζn),

we have:

max
1≤j≤J

∥uj ○ λn − unj ∥T = max
1≤j≤J

∥µ−1
j ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds) ○ λn − µ−1

j ψ (ξnj +
K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)∥

T

≤ µ−1 max
1≤j≤J

∥ψ (ξj ○ λn +
K

∑
l=1

qljηl

ˆ λn(⋅)

0
yl(s)ds) − ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)∥

T

≤ µ−1 max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + µ−1ηKTMT ∥λ̇n − 1∥T

+ µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T

≤ µ−1∥(ξ, ζ) ○ λn − (ξn, ζn)∥T,J+K + µ−1ηKTMT ∥λ̇n − 1∥T

+ µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T , (128)

where µ ∶= min1≤j≤J µj and where the second inequality follows from Equation (90). Since (ξn, ζn)→

(ξ, ζ) in DJ+K , for ε > 0 fixed there exists an n0 such that for all n ≥ n0,

µ−1∥(ξ, ζ) ○ λn − (ξn, ζn)∥T,J+K ≤ ε
3

(129)

and that

µ−1ηKTMT ∥λ̇n − 1∥T ≤ ε
3
. (130)

Furthermore, by Equation (125), there exists an n1 such that for all n ≥ n1,

µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T ≤ ε
3
. (131)

Finally, let n2 be large enough such that Equation (126) holds for all n ≥ n2. Then by Equations
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(128) – (131), it follows that for all n ≥ max{n0, n1, n2},

∥u ○ λn − un∥T,J ∨ ∥λ̇n − 1∥T ≤ ε, (132)

which is the desired result.

Continuity of f . The continuity proof for f is nearly identical to the continuity proof for g [see

Equation (108) for its expression]. Suppose (ξn, ζn) → (ξ, ζ) in DJ+K as n →∞ and let T > 0 be

a continuity point of (ξ, ζ). Then there exists a sequence of homeomorphisms λn ∈ Λ̃T such that

Equation (114) holds. Letting x = f(ξ, ζ), xn = f(ξn, ζn), y = h(ξ, ζ)) and yn = h (ξn, ζn), we have:

max
1≤j≤J

∥xj ○ λn − xnj ∥T = max
1≤j≤J

∥φ(ξj ○ λn +
K

∑
l=1

qljηl

ˆ λn(⋅)

0
yl(s)ds) − φ(ξnj +

K

∑
l=1

qljηl

ˆ ⋅

0
ynl (s)ds)∥

T

≤ 2 max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + 2η
K

∑
l=1

∥
ˆ ⋅

0
yl (λn(s)) λ̇n(s)ds −

ˆ ⋅

0
ynl (s)ds∥

T

≤ 2∥(ξ, ζ) ○ λn − (ξn, ζn)∥T,J+K + 2ηKTMT ∥λ̇n − 1∥T

+ 2ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T , (133)

where the first inequality follows from Equation (91). We see that the right hand side Equation

(133) is the same as the right hand side Equation (128), except with 2 instead of µ−1. Thus, the

same final arguments used in the continuity proof of g can be used to complete the continuity proof

for h.

Continuity of (f, g, h). We regard (f, g, h) as a function from DJ+K → D2J+K defined by

(ξ, ζ) ↦ (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)). Suppose that (ξn, ζn) → (ξ, ζ) in DJ+K and let T > 0 be a

continuity point of (ξ, ζ). Therefore, there exists a sequence of homeomorphisms λn ∈ Λ̃T such

that Equation (114) holds. For notational purposes, let Fn = (f(ξn, ζn), g(ξn, ζn), h(ξn, ζn)),

F = (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)), xn = f(ξn, ζn), x = f(ξ, ζ), un = g(ξn, ζn), u = g(ξ, ζ), yn = h(ξn, ζn),

and y = h(ξ, ζ). Using this notation, to prove continuity of (f, g, h) we it suffices to show that

∥F ○ λn − Fn∥T,2J+K ∨ ∥λ̇n − 1∥→ 0 as n→∞. (134)

But note that

∥F ○ λn − Fn∥T,2J+K ≡ max
1≤j≤J

∥xj ○ λn − xnj ∥T ∨ max
1≤j≤J

∥uj ○ λn − unj ∥T ∨ max
1≤k≤K

∥yk ○ λn − ynk ∥T . (135)
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Since each of the three terms on the right hand side of Equation (135) converge to zero (by continuity

of f , g, and h separately), Equation (134) will follow. The proof is complete.

C Proof of Lemma 4

The general proof technique we use parallels that of Lemma 1 in Reed and Ward (2004). We prove

that for each T > 0, there exists a unique y ∈DK
T satisfying Equation (98), then extend this to DK

in the obvious way. To improve the readability of this proof, we break it up into a few separate

steps.

C.1 Existence of an Element in DT
K Satisfying Equation (98)

We prove existence via the method of successive approximations. In particular, we show that the

sequence formed by this method is Cauchy in DT
K , and then argue that the limit of the sequence

(by completeness of DT
K) satisfies Equation (98). To that end, let y0

k ≡ 0 ∈D and let ynk ∈D, n ≥ 1,

be defined by

ynk ∶= ξk − ηk
ˆ ⋅

0
yn−1
k (s)ds −

J

∑
j=1

pjkψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yn−1
l ds) , (136)

for each k = 1, . . . ,K. We claim that the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .} defined by

Equation (136) is Cauchy in DK
T ; see Claim 1 at the end of Appendix C for a proof of this claim.

By completeness of (DK
T , ∥ ⋅ ∥T,K), it follows that

(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ])→ (y∞1,T , . . . , y∞K,T ) ∈DK

T as n→∞. (137)

To show that (y∞1,T , . . . , y∞K,T ) satisfies (98), define the mapping L ∶DK
T →DK

T by

(y1, . . . , yK)↦
⎛
⎝
ζk − ηk

ˆ ⋅

0
yk(s)ds −

J

∑
j=1

pjkψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds)

⎞
⎠
k=1,...,K

. (138)

Then for y, ỹ ∈DK
T we have:

∥L(y) −L(ỹ)∥T,K = max
1≤k≤K

∥ηk
ˆ ⋅

0
(yk(s) − ỹk(s)) ds +

J

∑
j=1

pjk

⎡⎢⎢⎢⎢⎣
ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds)

− ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
ỹl(s)ds)

⎤⎥⎥⎥⎥⎦
∥
T
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≤ max
1≤k≤K

⎧⎪⎪⎨⎪⎪⎩
ηT ∥yk − ỹk∥T +

J

∑
j=1

K

∑
l=1

ηT ∥yl − ỹl∥T
⎫⎪⎪⎬⎪⎪⎭

≤ ηT ∥y − ỹ∥T,K + ηTJK∥y − ỹ∥T,K

≤ ηTJK∥y − ỹ∥T,K . (139)

Equation (139) shows that L is Lipschitz continuous, so by Equations (136) – (137) we have

(y∞1,T , . . . , y∞K,T )← (yn+1
1 ∣[0,T ], . . . , y

n+1
K ∣[0,T ]) = L (yn1 ∣[0,T ], . . . , y

n
K ∣[0,T ])→ L (y∞1,T , . . . , y∞K,T ) , (140)

as n→∞. By uniqueness of limits in metric spaces, it follows that

L (y∞1,T , . . . , y∞K,T ) = (y∞1,T , . . . , y∞K,T ) , (141)

implying that (y∞1,T , . . . , y∞K,T ) satisfies Equation (98).

C.2 Uniqueness of the Element in DT
K Satisfying Equation (98)

We show that (y∞1,T , . . . , y∞K,T ) is the unique element in DK
T satisfying Equation (98). To that end,

suppose that (y1, . . . , yK), (ỹ1, . . . , ỹK) ∈DK
T both satisfy Equation (98). Define

m ∶= inf {n ≥ 1 ∶ n
2
(2JKη)−1 > T} . (142)

Then for t1 = 1
2 (2JKη)−1 we have

max
1≤k≤K

∥yk − ỹk∥t = max
1≤k≤K

∥ηk
ˆ ⋅

0
(yk(s) − ỹ(s)) ds +

J

∑
j=1

pjk

⎡⎢⎢⎢⎢⎣
ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yl(s)ds)

− ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
ỹl(s)ds)

⎤⎥⎥⎥⎥⎦
∥
t1

≤ max
1≤k≤K

η

ˆ t1

0
∥yk − ỹk∥t1 ds +

J

∑
j=1

K

∑
l=1

η

ˆ t1

0
∥yl − ỹl∥t1 ds

≤ 2JKηt1 max
1≤k≤K

∥yk − ỹk∥t1 . (143)

Since 2JKηt1 = 1
2 < 1, Equation (143) implies that max1≤k≤K ∥yk − ỹk∥t1 = 0, so that

y = ỹ on [0, t1] . (144)
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Now for t2 = (2JKη)−1 we have

max
1≤k≤K

∥yk − ỹk∥t2 ≤ η∥
ˆ ⋅

0
∣yk(s) − ỹk(s)∣ds∥

t2
+

J

∑
j=1

K

∑
l=1

η∥
ˆ ⋅

0
∣yl(s) − ỹl(s)∣ds∥

t2

= max
1≤k≤K

η∥
ˆ t1

0
∣yk(s) − ỹk(s)∣ds +

ˆ ⋅

t1

∣yk(s) − ỹk(s)∣ds∥
t2

+ ηJ
K

∑
l=1

∥
ˆ t1

0
∣yl(s) − ỹl(s)∣ds +

ˆ ⋅

t1

∣yl(s) − ỹl(s)∣ds∥
t2

≤ ηt1 max
1≤k≤K

∥yk − ỹk∥t1 + (t2 − t1) max
1≤k≤K

∥yk − ỹk∥t2

+ ηJ
K

∑
l=1

[t1∥yl − ỹl∥t1 + (t2 − t1)∥yl − ỹl∥t2]

≤ 2ηJK (t2 − t1) max
1≤k≤K

∥yk − ỹk∥t2 , (145)

where in the last inequality we use the fact that Equation (144) holds. Since 2ηJK(t2 − t1) = 1
2 < 1,

Equation (145) implies that ∥yk − ỹk∥t2 = 0, so that

y = ỹ on [0, t2] . (146)

We can continue in this iterative manner to show that for each n = 1, . . . ,m − 1,

y = ỹ on [0, tn], (147)

where

tn =
n

2
(2JKη)−1 for all n = 1, . . . ,m − 1. (148)

If in fact tm−1 = T , then we are done by Equation (147). If on the other hand tm−1 < T , then we can

take tm = T and show using the same argument that

y = ỹ on [0, tm], (149)

which would then complete the proof.
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C.3 Extension to a Unique Element in DK Satisfying Equation (98)

We use the constructed unique solution in DK
T to define a (y∞1 , . . . , y∞K ) that is the unique element

in DK satisfying Equation (98). To that end, define (y∞1 , . . . , y∞K ) ∈DK by

(y∞1 , . . . , y∞K ) (t) ∶= (y∞1,T , . . . , y∞K,T ) (t) for t ∈ [0, T ]. (150)

To complete the proof, we must show that (y∞1 , . . . , y∞K ) is well-defined and is the unique element

in DK satisfying Equation (98). To prove that (y∞1 , . . . , y∞K ) is well-defined, we must show that

whenever t ∈ [0, T1] ∩ [0, T2] that

(y∞1,T1 , . . . , y
∞
K,T1) (t) = (y∞1,T2 , . . . , y

∞
K,T2) (t). (151)

Without loss of generality, suppose that T1 ≤ T2. Then (y∞1,T2 , . . . , y
∞
K,T2

) ∣[0,T1] ∈ DK
T1

satisfies

Equation (98) for all t ≤ T1. By uniqueness,

(y∞1,T1 , . . . , y
∞
K,T1) = (y∞1,T2 , . . . , y

∞
K,T2) ∣[0,T1],

so we have that

(y∞1,T1 , . . . , y
∞
K,T1) (t) = (y∞1,T2 , . . . , y

∞
K,T2) ∣[0,T1](t) = (y∞1,T2 , . . . , y

∞
K,T2) (t),

proving Equation (151) holds. Next we show that (y∞1 , . . . , y∞K ) satisfies Equation (98). Indeed,

for any t ∈ [0,∞), there exists a T > 0 such that Equation (150) holds. But since the right hand

side of Equation (150) satisfies Equation (98) at t, so does (y∞1 , . . . , y∞K ), which gives the desired

result. Finally, we show that (y∞1 , . . . , y∞K ) is unique. To that end, let (y1, . . . , yK) ∈DK also satisfy

Equation (98) and fix t ∈ [0,∞). Let T > 0 be such that t ∈ [0, T ]. Then (y1, . . . , yK)∣[0,T ] ∈ DK
T

satisfies Equation (98) for all t ∈ [0, T ]. Since (y∞1 , . . . , y∞K ) ∣[0,T ] also satisfies Equation (98) for all

t ∈ [0, T ], uniqueness implies that

(y∞1 , . . . , y∞K ) (t) = (y∞1 , . . . , y∞K ) ∣[0,T ](t) = (y1, . . . , yK)∣[0,T ](t) = (y1, . . . , yK)(t).

Therefore, (y∞1 , . . . , y∞K ) = (y1, . . . , yK), as desired. This completes the proof.

We conclude Appendix C with a proof showing that the sequence defined by Equation (136) is

Cauchy:
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Claim 1. For each T > 0, the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .} defined by Equation

(136) is Cauchy in DT
K (with respect to the norm ∥ ⋅ ∥T,K).

Proof. For any t ∈ [0, T ] note that

∥y1
k − y

0
k∥t = ∥ζk −

J

∑
j=1

pjkψ (ξj) ∥t ≤ ∥ζk∥t +
J

∑
j=1

∥ψ(ξj)∥t

≤ max
1≤k≤K

∥ζk∥T +
J

∑
j=1

∥ψ(ξj)∥T =∶ CT . (152)

Let η ∶= max1≤k≤K ηk and fix δ ∈ (0, T ) such that

2δηJK < 1. (153)

Then for n ≥ 2,

∥ynk − y
n−1
k ∥δ = ∥ηk

ˆ ⋅

0

(yn−2
k (s) − yn−1

k (s)) ds

+
J

∑
j=1

pjk [ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yn−2
l ds) − ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yn−1
l ds)]∥

δ

≤ ηkδ∥yn−1
k − yn−2

k ∥δ +
J

∑
j=1

pjk∥
K

∑
l=1

qljηl

ˆ ⋅

0

(yn−1
l (s) − yn−2

l (s)) ds∥
δ

≤ ηkδ∥yn−1
k − yn−2

k ∥δ +
J

∑
j=1

pjk
K

∑
l=1

qljηlδ∥yn−1
l − yn−2

l ∥δ

≤ δη (∥yn−1
k − yn−2

k ∥δ + J
K

∑
l=1

∥yn−1
l − yn−2

l ∥δ)

≤ 2δηJ
K

∑
l=1

∥yn−1
l − yn−2

l ∥δ, (154)

where the first inequality follows from Equation (90). Doing another iteration of Equation (154)

gives

∥ynk − y
n−1
k ∥δ ≤ 2δηJ

K

∑
l=1

∥yn−1
l − yn−2

l ∥δ ≤ (2δηJ)2K
K

∑
l=1

∥yn−2
l − yn−3

l ∥δ. (155)

Continuing in the way and using Equation (152), we find that

∥ynk − y
n−1
k ∥δ ≤ (2δηJK)n−1CT for all n ≥ 1. (156)

For each k = 1, . . . ,K, we now prove that for all m ≥ 1 and n ≥ 1 that

∥ynk − y
n−1
k ∥mδ ≤mnm (2δηJK)n−1CT . (157)
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We proceed by (strong) induction on m. The base case follows by Equation (156) since for any

n ≥ 1,

∥ynk − y
n−1
k ∥1⋅δ ≤ (2δηJK)n−1CT ≤ 1 ⋅ n1 (2δηJK)n−1CT , (158)

which is the m = 1 case. For the inductive step assume that for all n ≥ 2,

∥ynk − y
n−1
k ∥rδ ≤ rnr (2δηJK)n−1CT for all r = 1, . . . ,m. (159)

By Equation (159), it follows that for any n ≥ 2,

∥ynk − y
n−1
k ∥(m+1)δ = ∥ηk

ˆ ⋅

0

(yn−2
k (s) − yn−1

k (s)) ds

+
J

∑
j=1

pjk

⎡⎢⎢⎢⎢⎣
ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅

0
yn−2
l ds)

− ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅

0
yn−1
l ds)

⎤⎥⎥⎥⎥⎦
∥
(m+1)δ

≤ ηk
m+1

∑
r=1

ˆ rδ

(r−1)δ
∥yn−1
k − yn−2

k ∥rδ ds

+
J

∑
j=1

pjk∥
K

∑
l=1

qljηl

ˆ ⋅

0
∣yn−1
l (s) − yn−2

l (s)∣ds∥
(m+1)δ

≤ δη
m+1

∑
r=1

∥yn−1
k − yn−2

k ∥ + η
J

∑
j=1

K

∑
l=1

m+1

∑
r=1

ˆ rδ

(r−1)δ
∥yn−1
l − yn−2

l ∥rδ ds

= δη [
m+1

∑
r=1

∥yn−1
k − yn−2

k ∥ + J
K

∑
l=1

m+1

∑
r=1

∥yn−1
l − yn−2

l ∥rδ]

≤ 2δηJ
K

∑
l=1

m+1

∑
r=1

∥yn−1
l − yn−2

l ∥rδ

= 2δηJ
K

∑
l=1

m

∑
r=1

∥yn−1
l − yn−2

l ∥rδ + 2δηJ
K

∑
l=1

∥yn−1
l − yn−2

l ∥(m+1)δ

≤ 2δηJ
K

∑
l=1

m

∑
r=1

r(n − 1)r (2δηJK)n−2CT + 2δηJ
K

∑
l=1

∥yn−1
l − yn−2

l ∥(m+1)δ

= (2δηJK)n−1CT
m

∑
r=1

r(n − 1)r + 2δηJ
K

∑
l=1

∥yn−1
l − yn−2

l ∥(m+1)δ

≤ (2δηJK)n−1CTmn
m + 2δηJ

K

∑
l=1

∥yn−1
l − yn−2

l ∥(m+1)δ. (160)

By Equations (152) and (160), for n = 2 we have

∥y2
k − y

1
k∥(m+1)δ ≤ (2δηJK)CTm2m + 2δηJ

K

∑
l=1

∥y1
l − y

0
l ∥(m+1)δ
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≤ (2δηJK)CTm2m + 2δηJKCT

= (2δηJK)CT (m2m + 1) . (161)

Similarly, by Equations (160) – (161), for n = 3 we have

∥y3
k − y

2
k∥(m+1)δ ≤ (2δηJK)2CTm3m + 2δηJ

K

∑
l=1

∥y2
l − y

1
l ∥(m+1)δ

≤ (2δηJK)2CTm3m + 2δηJ
K

∑
l=1

(2δηJK)CT (m2m + 1)

= (2δηJK)2CT (m3m +m2m + 1) . (162)

Continuing in this iterative fashion, we find that for n ≥ 2,

∥ynk − y
n−1
k ∥(m+1)δ ≤ (2δηJK)n−1CT (m

n

∑
i=2

im + 1)

≤ (2δηJK)n−1CT (mnm+1 + 1)

≤ (2δηJK)n−1CT (m + 1)nm+1. (163)

Because Equation (157) also holds for all m ≥ 1 when n = 1 [by Equation (152)], this completes the

inductive step. We conclude that Equation (157) holds for all m ≥ 1 and n ≥ 1.

By Equation (157), for all n ≥ 1 and k = 1, . . . ,K we have

∥ynk − y
n−1
k ∥T ≤ ∥ynk − y

n−1
k ∥⌈δ−1T ⌉δ ≤ ⌈δ−1T ⌉n⌈δ−1T ⌉ (2δJK)n−1CT , (164)

implying that

max
1≤k≤K

∥ynk − y
n−1
k ∥T ≤ ⌈δ−1T ⌉n⌈δ−1T ⌉ (2δJK)n−1CT . (165)

Since by Equation (153) we have

lim sup
n→∞

RRRRRRRRRRR

⌈δ−1T ⌉(n + 1)⌈δ−1T ⌉ (2δJK)nCT
⌈δ−1T ⌉n⌈δ−1T ⌉ (2δJK)n−1CT

RRRRRRRRRRR
= lim sup

n→∞

⎡⎢⎢⎢⎣

(n + 1)⌈δ−1T ⌉

n⌈δ−1T ⌉
⋅ 2δJK

⎤⎥⎥⎥⎦
= 2δJK < 1, (166)

the ratio test implies that

∞

∑
n=1

⌈δ−1T ⌉n⌈δ−1T ⌉ (2δJK)n−1CT <∞, (167)

which in turn implies that the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .} is Cauchy in DK

T .
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D Miscellaneous Proofs and Derivations

D.1 Derivation of Equations (40) – (41)

We begin by deriving Equation (40), the diffusion scaled system equation for the single-server

stations. By Equations (8), (10), and (12) – (13), we have

Qnj (t) = Qnj (0) +Anj (t) −Dn
j (t)

= Qnj (0) +
K

∑
k=1

Ψkj (Mk (ηk
ˆ t

0
V n
k (s)ds)) −Nj (nµjTnj (t)) . (168)

Elementary algebraic manipulations and the appropriate scaling in Equations (23) – (35) applied to

Equation (168) yields

Q̂nj (t) = n−1/2Qnj (0) +
K

∑
k=1

n−1/2Ψkj (Mk (ηk
ˆ t

0
V n
k (s)ds)) − n−1/2Nj (nµjTnj (t))

= Q̂nj (0) +
K

∑
k=1

n−1/2 [Ψkj (Mk (ηk
ˆ t

0
V n
k (s)ds)) − qkjMk (ηk

ˆ t

0
V n
k (s)ds)]

+
K

∑
k=1

qkjn
−1/2Mk (ηk

ˆ t

0
V n
k (s)ds) − n−1/2 [Nj (nµjTnj (t)) − nµjTnj (t)]

− n−1/2nµjT
n
j (t)

= Q̂nj (0) +
K

∑
k=1

n−1/2
⎡⎢⎢⎢⎢⎣
Ψkj (nn−1Mk (nηk

ˆ t

0
n−1V n

k (s)ds)) − qkjnn−1Mk (nηk
ˆ t

0
n−1V n

k (s)ds)
⎤⎥⎥⎥⎥⎦

+
K

∑
k=1

qkjn
−1/2 [Mk (nηk

ˆ t

0
n−1V n

k (s)ds) − nηk
ˆ t

0
n−1V n

k (s)ds]

+
K

∑
k=1

qkjn
−1/2ηk

ˆ t

0
V n
k (s)ds

− n−1/2 [Nj (nµjTnj (t)) − nµjTnj (t)] −
√
nµj (t − Inj (t))

= Q̂nj (0) +
K

∑
k=1

n−1/2 [Ψkj (nM̄n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − nqkjM̄n

k (ηk
ˆ t

0

¯̄V n
k (s)ds)]

+
K

∑
k=1

qkjn
−1/2 [Mk (nηk

ˆ t

0

¯̄V n
k (s)ds) − nηk

ˆ t

0

¯̄V n
k (s)ds]

+
K

∑
k=1

qkjn
−1/2ηk

ˆ t

0

[
√
nV̂ n

k (s) + nmk] ds

− n−1/2 [Nj (nµjTnj (t)) − nµjTnj (t)] −
√
nµjt −

√
nµjI

n
j (t)

40



Alwan and Ata: Diffusion Approximations for Ridesharing Systems with Travel Times

= Q̂nj (0) +
K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) +

K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) − N̂n

j (µjTnj (t))

+
K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds − µj Înj (t) + t

√
n [

K

∑
k=1

qkjηkmk − µj]

= ξ̂nj (t) +
K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds − µj Înj (t),

which is Equation (40). Note that the final equality in the above calculation follows from Equation

(38), the definition of mk (given in Section 3), and the heavy traffic condition in Equation (21).

Next we derive Equation (41), the diffusion scaled system equation for the infinite-server stations.

By Equations (9) and (11) – (13), we have

V n
k (t) = V n

k (0) +Enk (t) − F
n
k (t)

= V n
k (0) +

J

∑
j=1

Φjk (Nj (nµjTnj (t))) −Mk (ηk
ˆ t

0
V n
k (s)ds) . (169)

As before, elementary algebraic manipulations and the appropriate scaling in Equations (23) – (35)

applied to Equation (169) yields

V̂ n
k (t) = n−1/2V n

k (0) +
J

∑
j=1

n−1/2Φjk (Nj (nµjTnj (t))) − n−1/2Mk (ηk
ˆ t

0
V n
k (s)ds)

= V̂ n
k (0) +

J

∑
j=1

n−1/2 [Φjk (Nj (nµjTnj (t))) − pjkNj (nµjTnj (t))]

+
J

∑
j=1

n−1/2pjkNj (nµjTnj (t)) − n−1/2 [Mk (ηk
ˆ t

0
V n
k (s)ds) − ηk

ˆ t

0
V n
k (s)ds]

− n−1/2ηk

ˆ t

0
V n
k (s)ds

= V̂ n
k (0) +

J

∑
j=1

n−1/2 [Φjk (nn−1Nj (nµjTnj (t))) − pjknn−1Nj (nµjTnj (t))]

+
J

∑
j=1

n−1/2pjk [Nj (nµjTnj (t)) − nµjTnj (t)] +
J

∑
j=1

n−1/2pjknµjT
n
j (t)

− n−1/2 [Mk (nηk
ˆ t

0
n−1V n

k (s)ds) − nηk
ˆ t

0
n−1V n

k (s)ds]

− n−1/2ηk

ˆ t

0

[
√
nV̂ n

k (s) + nmk] ds

= V̂ n
k (0) +

J

∑
j=1

n−1/2 [Φjk (nN̄n
j (µjTnj (t))) − pjknN̄j (µjTnj (t))]

+
J

∑
j=1

pjkN̂
n
j (µjTnj (t)) +

J

∑
j=1

√
npjkµj (t − Inj (t))
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− n−1/2 [Mk (nηk
ˆ t

0

¯̄V n
k (s)ds) − nηk

ˆ t

0

¯̄V n
k (s)ds]

− ηk
ˆ t

0
V̂ n
k (s)ds − t

√
nηkmk

= V̂ n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjTnj (t))) +

J

∑
j=1

pjkN̂
n
j (µjTnj (t)) − M̂n

k (ηk
ˆ t

0

¯̄V n
k (s)ds)

− ηk
ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t) + t

√
n

⎡⎢⎢⎢⎢⎣

J

∑
j=1

pjkµj − ηkmk

⎤⎥⎥⎥⎥⎦

= ζ̂nk (t) − ηk
ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t),

which is Equation (41). Note that the final equality in the above calculation follows from Equation

(39) and the definition of mk.

Below is the proof of a result used in the proof of Lemma 1 in Section 5:

Lemma 5. Let {Xn}∞n=1 be a random sequence in D such that ∥Xn∥T ⇒ 0 for all T > 0. Then

Xn ⇒ 0 in D.

Proof. Note that ∥Xn∥T ⇒ 0 for all T > 0 is equivalent to ∥Xn∥T
p
→ 0 for all T > 0. We claim that

Xn p
→ 0 in D. This amounts to showing that for all 0 < ε < 1,

P (
ˆ ∞

0
e−t [dt (Xn,0) ∧ 1] dt > ε)→ 0 as n→∞; (170)

for example, see Chapter 3, Section 3 of Whitt (2002). More explicitly, we must show that

P (
ˆ ∞

0
e−t [ inf

λ∈Λt

{∥Xn ○ λ∥t ∨ ∥λ − e∥t} ∧ 1] dt > ε)→ 0 as n→∞. (171)

But,

P (
ˆ ∞

0
e−t [ inf

λ∈Λt

{∥Xn ○ λ∥t ∨ ∥λ − e∥t} ∧ 1] dt > ε)

≤ P (
ˆ ∞

0
e−t [∥Xn∥t ∧ 1] dt > ε)

≤ P (
ˆ T

0
e−t∥Xn∥t dt +

ˆ ∞

T
e−t dt > ε) , (172)

for all T > 0. Now fix T > 0 to be such that
´∞
T e−t dt = ε/2. Continuing from Equation (172),

P (
ˆ T

0
e−t∥Xn∥t dt +

ˆ ∞

T
e−t dt > ε) = P (

ˆ T

0
e−t∥Xn∥t dt >

ε

2
) ≤ P (∥Xn∥T (1 − ε

2
) > ε

2
)

= P (∥Xn∥T > ε
2
(1 − ε

2
)) . (173)
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Since ∥Xn∥T
p
→ 0, it follows from Equation (173) that Xn p

→ 0 in D. Since convergence in probability

implies convergence in distribution, we conclude that Xn ⇒ 0 in D.

D.2 Omitted Details From the Proof of Lemma 1

We show that the right hand sides of Equations (64) and (65) converge weakly to a nondegenerate

limit and conclude that ∥ξ̄nj ∥T ⇒ 0 and ∥ζ̄nk ∥T ⇒ 0. We show this only for Equation (64); the proof

for Equation (65) is identical. First, by Equation (46) and the continuous mapping theorem,

∥Q̂nj (0)∥T ⇒ ∥Qj(0)∥T , (174)

so that

n−1/2∥Q̂nj (0)∥T ⇒ 0 ⋅ ∥Qj(0)∥T = 0. (175)

Define M̃k(t) =Mk(ηkt), so that M̃k is a Poisson process with rate ηk. By the functional central

limit theorem for renewal processes [see Theorem 14.6 in Billingsley (1999)],

ˆ̃Mn
k ⇒ η

1/2
k Bk, (176)

where Bk is a standard Brownian motion and where

ˆ̃Mn
k (t) =

M̃k(nt) − nηkt√
n

≡ Mk(nηkt) − nηkt√
n

= M̂n
k (ηkt). (177)

By Equations (176) – (177) and the continuous mapping theorem, note that

n−1/2∥M̂n
k (ηk ⋅)∥T ⇒ 0 ⋅ ∥η1/2Bk∥T = 0. (178)

Furthermore, observe by Equations (35) and (177) that

M̄n
k (ηkt) =

M̂n
k (ηkt)√
n

+ ηkt. (179)

Therefore, by Equations (176) and (179),

M̄n
k (ηk⋅) =

M̂k(ηk ⋅)√
n

+ ηke⇒ 0 ⋅ η1/2
k Bk + ηke = ηke, (180)
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where e ∶ [0,∞)→ [0,∞) is the identity map e(t) = t. By Equation (28) and Donsker’s theorem [see

Theorem 4 in Glynn (1990)],

Φ̂n
kj ⇒

√
qkj (1 − qkj)Bkj , (181)

where Bkj is a standard Brownian motion. Since t↦ M̄n
k (ηt) is non-decreasing function from [0,∞)

to [0,∞), the random time change theorem [see Proposition 5 in Glynn (1990)] and Equations (180)

– (181) yield

Ψ̂n
kj (M̄

n
k (ηk ⋅))⇒

√
qkj (1 − qkj)Bkj(ηk ⋅). (182)

By Equation (182) and the continuous mapping theorem,

n−1/2∥Ψ̂n
kj (M̄

n
k (ηk ⋅)) ∥T → 0 ⋅ ∥

√
qkj (1 − qkj)Bkj(ηk ⋅)∥T = 0. (183)

Similar to Equation (176), we have that

N̂n
j (µj ⋅)⇒ µ

1/2
j Bj , (184)

where Bj is standard Brownian motion. Another application of the continuous mapping theorem

with Equation (184) gives

n−1/2∥N̂n
j (µj ⋅)∥T ⇒ 0 ⋅ ∥µ1/2

j Bj∥T = 0. (185)

Finally, by Equations (64), (175), (178), (183), and (185), it follows that

∥ξ̄nj ∥T ≤ n−1/2∥Q̂nj (0)∥T +
K

∑
k=1

n−1/2∥Ψ̂n
kj (M̄

n
k (ηk⋅)) ∥T + n−1/2∥N̂n

j (µj ⋅) ∥T

+
K

∑
k=1

n−1/2∥M̂n
k (ηk⋅) ∥T ⇒ 0,

as desired.
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